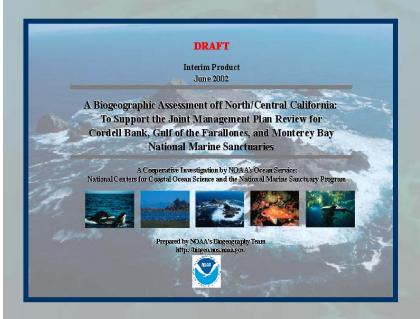
A Biogeographic Assessment of the Channel Islands National Marine Sanctuary & Surrounding Areas:

Final Status Report

A Presentation to the Sanctuary Advisory Council


Chris Caldow

NOAA's National Centers for Coastal Ocean Science
Biogeography Program
May 20, 2005


Why Us?

NOAA's National Centers for Coastal Ocean Science (NCCOS)

Mission: To provide Coastal
Managers with scientific
understanding and tools needed to
balance NOAA's environmental,
social, and economic goals.

Our Strengths: robust spatial analysis and integrated assessments

NCCOS's Biogeography Program

Mission: Develop knowledge and products on living marine resource distributions and ecology throughout the Nation's estuarine, coastal and marine environments, and to provide managers and scientists with an improved ecosystem basis for making decisions

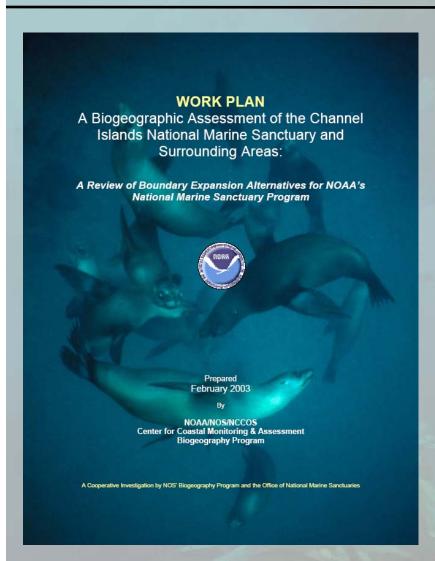
In the Beginning...

We need your guidance, and hope you will all choose to be involved throughout the duration of this project.

Are there specific biogeographic processes that you as a group feel we need to focus on?

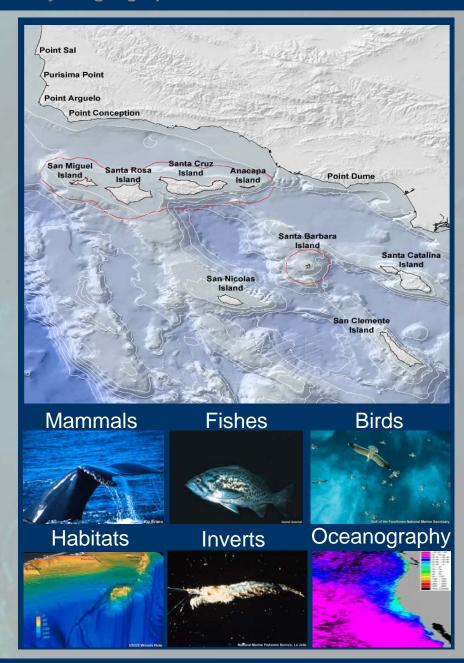
Are there specific taxa, habitats, or other issues that we should pay particular attention to?

Are there any experts or other individuals that you feel we MUST contact to ensure we get the job done right?

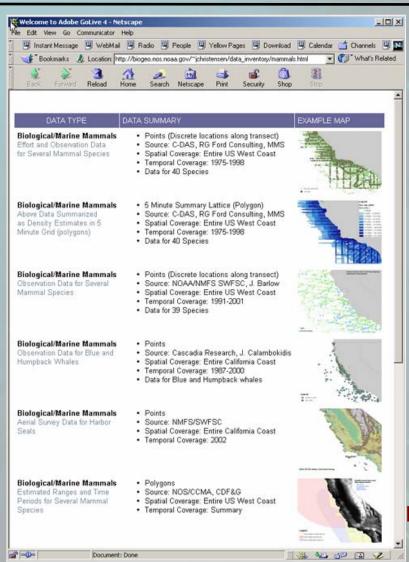


The Work Plan

TASK SUMMARY


- Completed in February 2003
- Represents consensus project
 blueprint between NCCOS, CINMS, and
 NMSP
- Includes project objectives, tasks, and associated timelines, project personnel, and contact information
- Project work plan is available on the project web site:

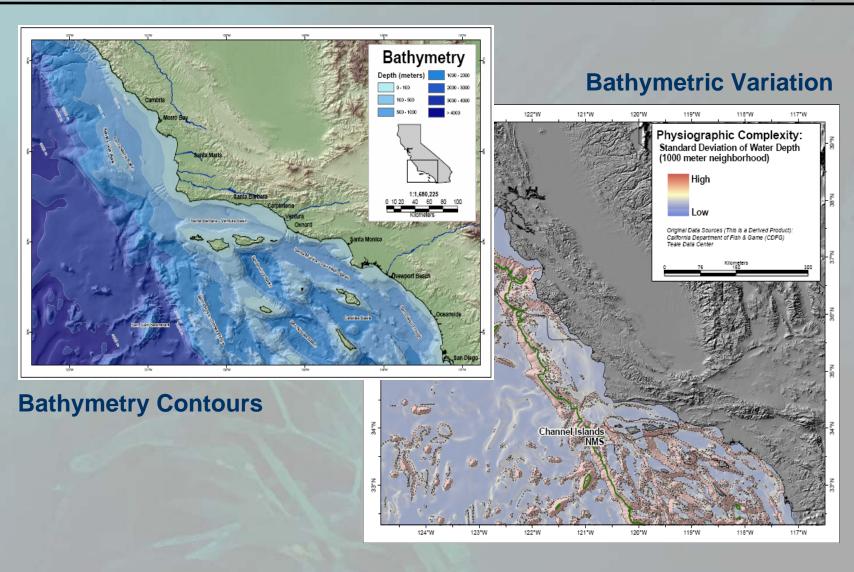
http://biogeo.nos.noaa.gov/projects/ca_nms/cinms


Channel Islands National Marine Sanctuary Biogeographic Assessment

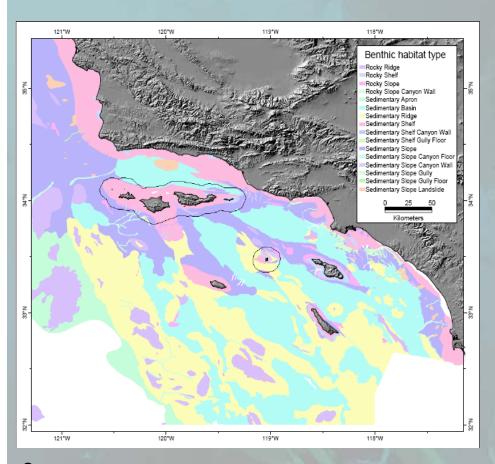
Questions to be Addressed in this Study:

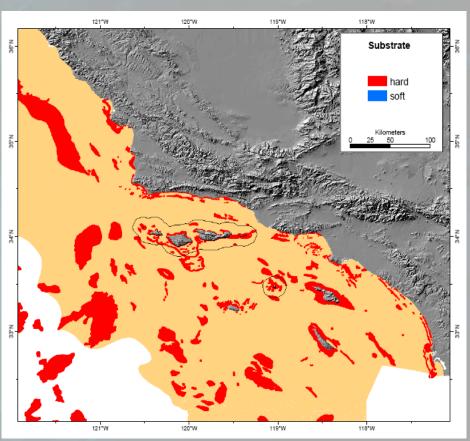
- What data currently exists allowing us to identify regions spatially important to species or communities?
- Does analysis of the existing data reveal patterns or trends in the distribution of marine associated fauna?
- Where existing data is insufficient can we model the distribution of selected species to reveal useful distributional information?
- What can these patterns and trends tell us about the biogeography of the region in general?
- How do these patterns and trends relate to proposed Sanctuary boundary alternatives?

Data Collection & Inventory



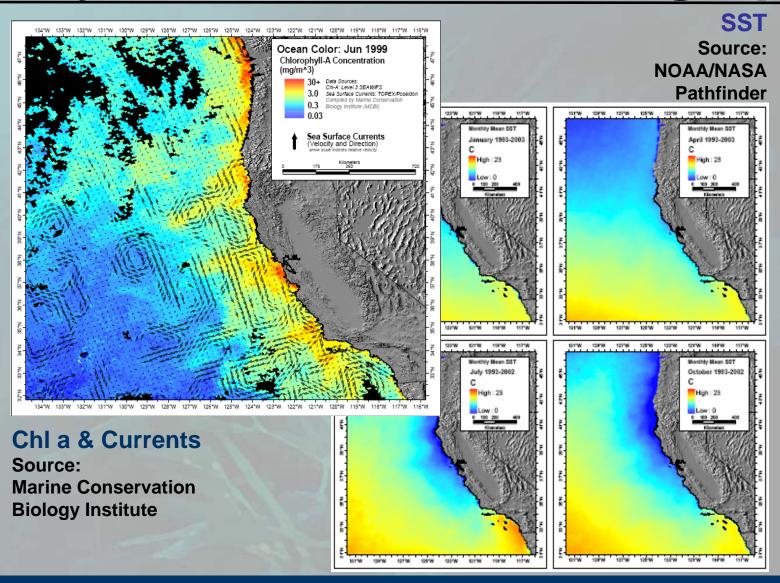
TASK SUMMARY


- A total of 47 spatially comprehensive datasets
- > INCLUDING:
 - 10 Marine mammal datasets
 - 3 Marine bird datasets
 - 13 Fish datasets
 - 5 Invertebrate datasets
 - 3 Intertidal community datasets
 - 3 Habitat datasets (kelp, substrate, NWI)
 - 7 Physical oceanographic datasets
- Data inventory is available on the project web site:


http://biogeo.nos.noaa.gov/projects/ca_nms/cinms

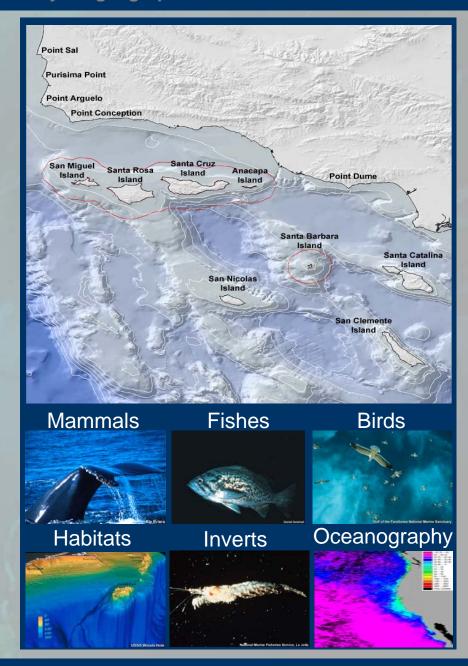
Physical Data - Bathymetry

Physical Data - Benthic Substrate

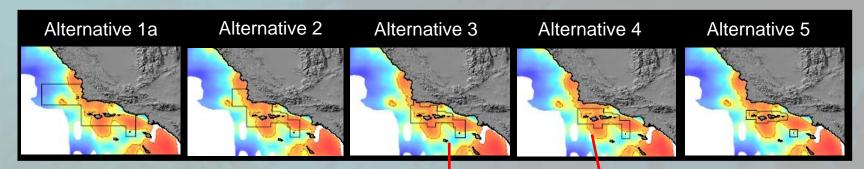


Source: NMFS, 2004 Essential Fish Habitat EIS

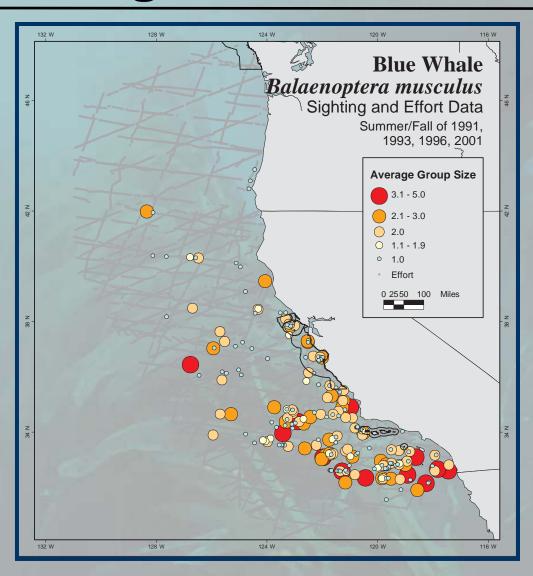
Source: NMFS, 2004 Essential Fish Habitat EIS And MMS/UCSB


Physical Data - Oceanography

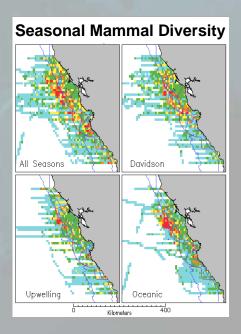
Channel Islands National Marine Sanctuary Biogeographic Assessment


Questions to be Addressed in this Study:

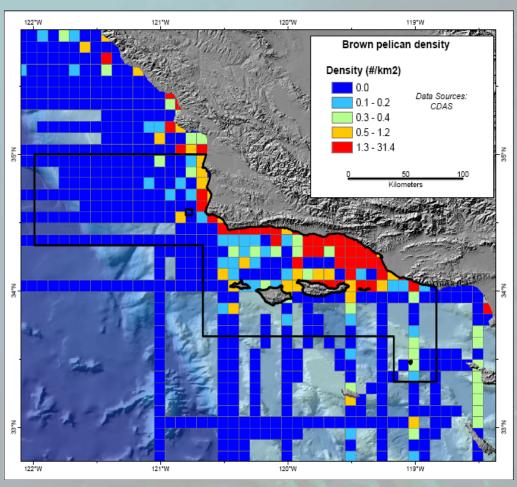
- What data currently exists allowing us to identify regions spatially important to species or communities?
- Does analysis of the existing data reveal patterns or trends in the distribution of marine associated fauna?
- Where existing data is insufficient can we model the distribution of selected species to reveal useful distributional information?
- What can these patterns and trends tell us about the biogeography of the region in general?
- How do these patterns and trends relate to proposed Sanctuary boundary alternatives?


For the Love of Acronyms - OAI

Bang for your area buck!!

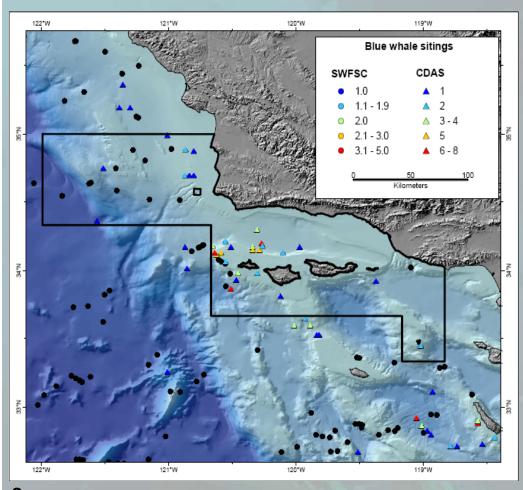


Alternative	Area (km²)	Mean Bird Diversity	High Diversity Area (km²)	∆ Area (%)		Δ Mean Diversity (%)	Δ High Diversiy Area (%)	Mean Bird Diversity OAI (relative)	High Diversity Area OAI (absolute)
NAA	3745	1.485	2284	-	Π	-	-	-	-
5	4536	1.487	2812	21		0.13	23.12	0 00638	1.094
4	7981	1.523	5507	113	П	2.56	141.11	0.02262	1.248
3	9044	1.53	6421	141	Ц	3.03	181.13	0.02141	1.28
2	13736	1.502	8791	267		1.14	284.89	0.00429	1.068
1a	22591	1.372	10391	503		-7.61	354.95	-0.01512	0.705
1	22613	1.375	10401	504		-7.41	355.39	-0.0147	0.705
SA	17093	1.489	9914	356		0.27	334.06	0.00076	0.937


Biological Data - Mammals & Birds

- **CDAS** database, a compilation of aerial & vessel surveys from 1975-1997
- > Seasonal density estimates (Davidson, Oceanic, etc.)
- ➤ Measures of mammal community structure (Richness, Diversity)

Biological Data - Sea/Shorebirds

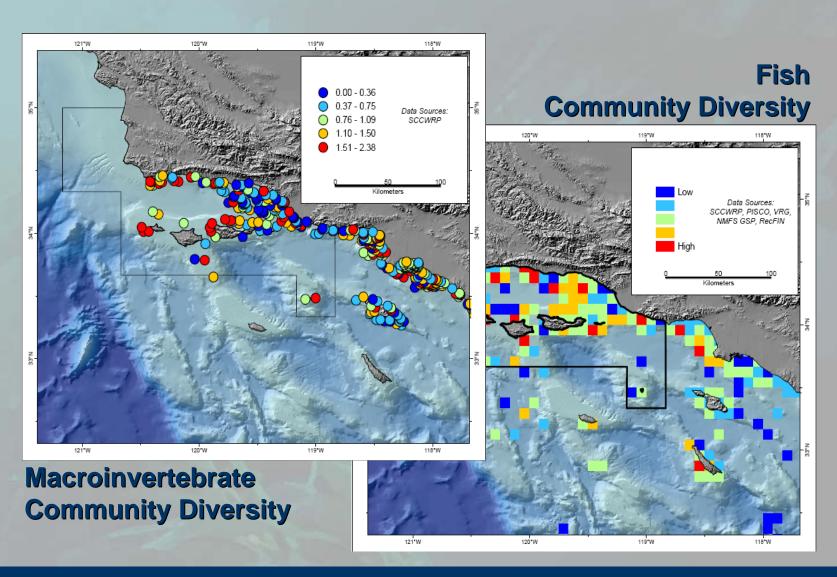


Results 11 Birds Single species – Brown pelican

Alternative	Total Individuals	Density (Individuals per km²)	Area (km²)	Absolute OAI	Relative OAI
NAA	374	0.834	3745	-	-
5	452	0.918	4536	0.99	0.47
4	540	0.722	7981	0.39	-0.12
3	913	0.927	9044	1.02	0.08
2	1355	0.853	13736	0.98	0.01
1a	2546	1.035	22591	1.15	0.05
1	2546	1.035	22613	1.15	0.05
SA	2546	1.204	17093	1.63	0.12

Source: MMS, 2001 Computer Database Analysis System (CDAS) 1975-1997

Biological Data – Marine Mammals



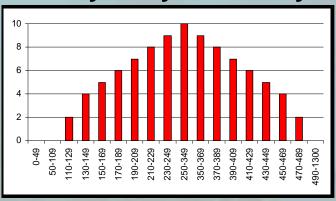
Results: 9 Marine Mammals Single species – Blue whale

Alt	Area (km²)	Density	Estimated Abundan ce	Density OAI (relative)	Abundan ce OAI (absolute)
NAA	3745	0.00807	30	-	-
5	4536	0.00712	32	-0.557	0.316
4	7981	0.004	32	-0.446	0.059
3	9044	0.00358	32	-0.393	0.047
2	13736	0.006	82	-0.096	0.65
1a	22591	0.00587	133	-0.054	0.68
1	22613	0.00587	133	-0.054	0.681
SA	17093	0.0053	91	-0.095	0.57

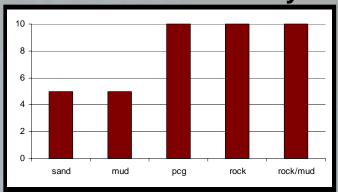
Source: SWFSC 1999-2001 MMS (CDAS) 1975-1997

Biological Data - Fish & Inverts

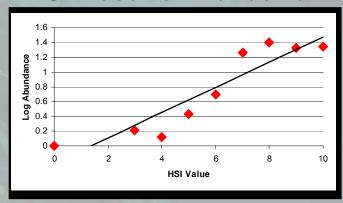
Channel Islands National Marine Sanctuary Biogeographic Assessment

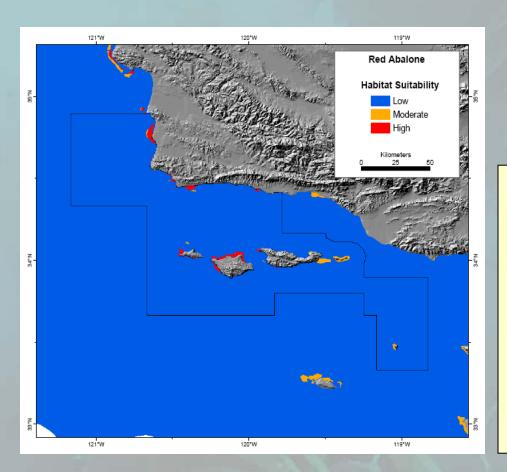

Questions to be Addressed in this Study:

- What data currently exists allowing us to identify regions spatially important to species or communities?
- Does analysis of the existing data reveal patterns or trends in the distribution of marine associated fauna?
- Where existing data is insufficient can we model the distribution of selected species to reveal useful distributional information?
- What can these patterns and trends tell us about the biogeography of the region in general?
- How do these patterns and trends relate to proposed Sanctuary boundary alternatives?

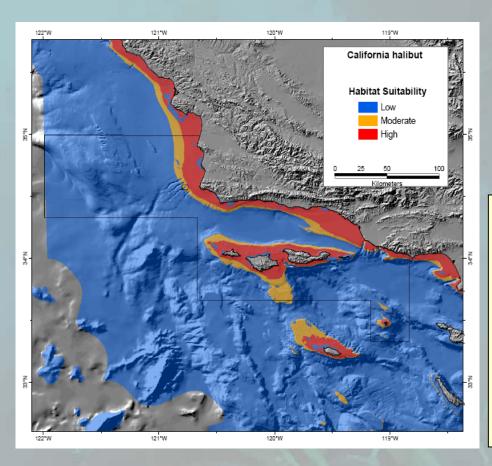


Habitat Suitability Modeling


Bathymetry Suitability


Substrate Suitability

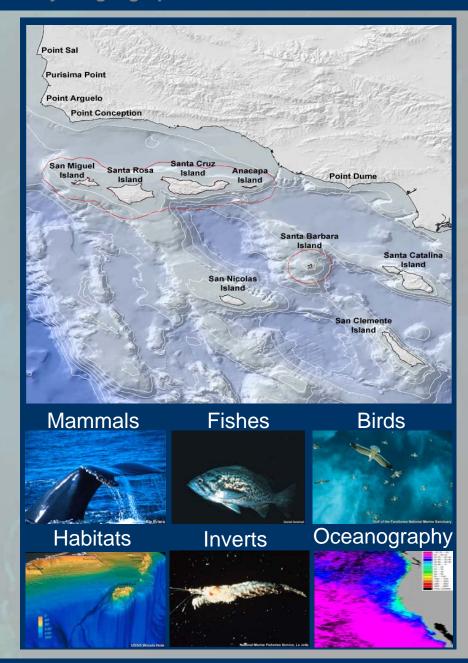
HSI Results - Validation


Biological Data - Invertebrates

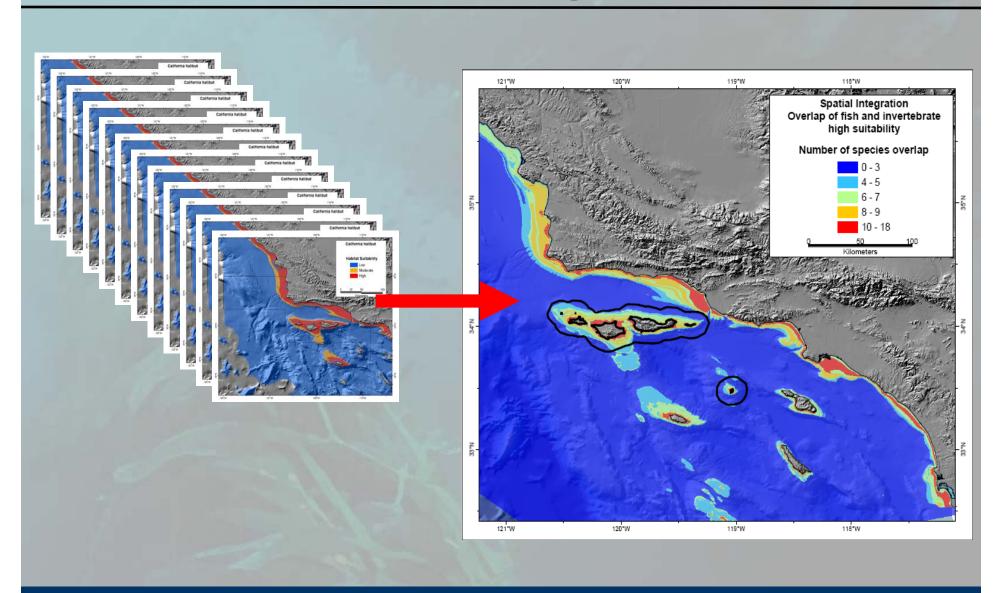
Results 15 Macroinvertebrates Single species – Red abalone

Altern ative	Area (km²)	High Suitabili ty Area (km²)	Δ Area (%)	∆ High Suitabilit y Area (%)	OAI (absolu te)
NAA	3745	123	-	-	-
5	4536	123	21.12	0.00	0.00
4	7981	123	113.11	0.00	0.00
3	9044	148	141.50	20.33	0.14
2	13736	230	266.78	86.99	0.33
1a	22613	241	503.82	95.93	0.19
1	22591	241	503.23	95.93	0.19
SA	17093	241	356.42	95.93	0.27

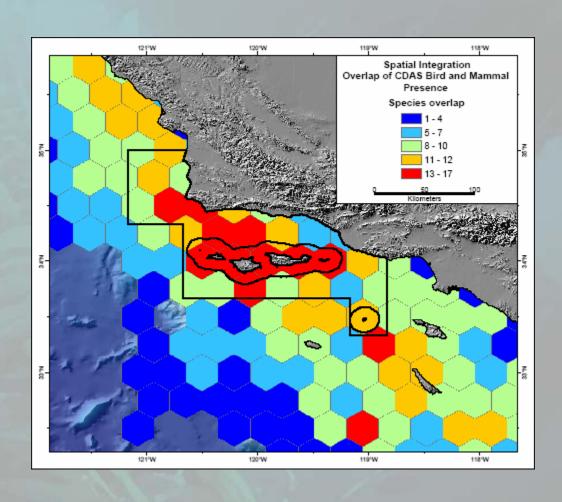
Biological Data - Fishes

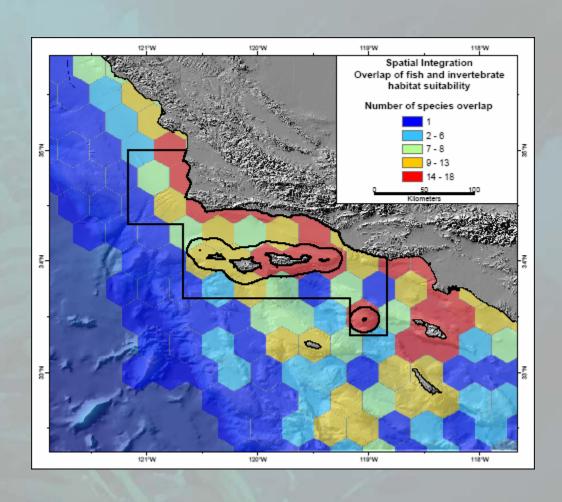

Results 12 Fish Single species – California halibut

Alt	Area (km²)	High Suitability Area (km²)	Δ Area (%)	∆ High Suitability Area (%)	OAI (absolute)
NAA	3745	1194	•	-	-
5	4536	1201	21.12	0.59	0.03
4	7981	1201	113.11	0.59	0.01
3	9044	1310	141.50	9.72	0.07
2	13736	2157	266.78	80.65	0.30
1	22613	3237	503.82	171.11	0.34
1a	22591	3234	503.23	170.85	0.34
SA	17093	3237	356.42	171.11	0.48

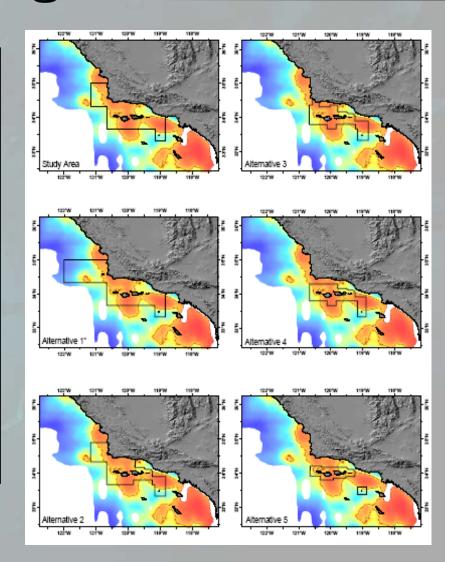

Channel Islands National Marine Sanctuary Biogeographic Assessment

Questions to be Addressed in this Study:


- What data currently exists allowing us to identify regions spatially important to species or communities?
- Does analysis of the existing data reveal patterns or trends in the distribution of marine associated fauna?
- Where existing data is insufficient can we model the distribution of selected species to reveal useful distributional information?
- What can these patterns and trends tell us about the biogeography of the region in general?
- How do these patterns and trends relate to proposed Sanctuary boundary alternatives?


Overall Integration

Bird & Mammal Integration



Fish & Invertebrate Integration

Overall Integration

	Cum	Moon	Final
Alternative	Sum Ranks	Mean Ranks	Final Ranks
NAA	-	-	-
5	371	5. 9	7
4	359	5.7	6
3	262	4.2	5
2	185	2.9	2
1a	247	3.9	4
1	246	3.9	3
Study Area	129	2.0	1

Next Steps

- Submit final draft to reviewers first week in June 2005
- Incorporate comments, compile metadata, format, send to printers
- ➤ Products: Hardcopy report followed by a CD including map files, limited data, all associated text & metadata
- ➤ Availability: all interested parties via hardcopy report, CD or Biogeography Team website

Extended Team

Many thanks to all for the warm Santa Barbara welcome

Airame, Satie

Allen, Jim

Barlow, Jay

Barnes, Tom

Barsky, Kristine

Blanchette, Carol

Brooks, Andy

Calambokidis, John

Carter, Harry

Caselle, Jenn

Charter, Rich

Clarke, Liz

Crook, Steve

Delong, Robert

Dugan, Jenny

Dunaway, Mary Elaine

Engle, Jack

Estes, Jim

Fangman, Sarah

Ford. Glen

Gaines, Steve

Gleason, Mary

Haaker, Pete

Holbrook, Sally

Hunt, George

Keeling, Shanta

Kenner, Mike

Kinlan, Brian

Kushner, David

Leeworthy, Bob

Love, Milton

Maas, Terry

McChesney, Gery

McCrary, Mike

McCutchan, Michelle

Merrifield, Matt

Mizrock, Sally

Murray, Steven

Ono, Dave

Pattengill-Semens, Christie Takekawa, John

Piltz, Fred

Pondella, Dan

Ralston, Steve

Reilly, Paul

Richards, Dan

Richards, John

Roberts, Ed

Roy, Kaustov

Schroeder, Donna

Schroeter, Steve

Scott, Paul

Senyck, Natalie

Shane, Mike

Stone, Alex

Stumpf, Rick

Sweetnam, Dale

Taniguchi, lan

Turk, Teresa

Ugoretz, John

Waltenberger, Ben

Warner, Bob

Washburn, Libe

Wilson, Mchelle

Worcester, Karen

Wright, Nancy

Yoklavich, Mary